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Introduction: Challenge

▪ The control challenge of soft robots primarily arises from two aspects

▪ Long Range Stress▪ Degree of Freedom(DOF)



Introduction: Solution

▪ At present, due to the lack of str ict,  accurate and eff ic ient 

numerical models, i t  is di ff icult  to model the mechanical behavior 

of soft robots, which adds chal lenges to the control  problem.

▪ However, i f  the elastic effects of soft robots can be accurately 

captured, there is an opportuni ty to use them to simpl i fy control  

problems.

▪ Therefore, the emergence of Elastica f i l ls the gap between 

tradit ional r igid-body solvers and high-f idel i ty f ini te element 

methods, providing a new test platform for the control methods 

of soft robots



Introduction: Toolkits

▪ PyElastica Package: This is the python implementation of Elastica, which is used

to simulate assemblies of slender, one-dimensional structures using Cosserat Rod

theory. We used PyElastica to achieve robot simulation.

▪ Stable Baselines: Reinforcement learning algorithms toolkits based on OpenAI

Baselines. Five different RL model-free algorithms are used.

The Elastica Simulation Platform

This is an open-source software aiming to provide cutting-edge platform for

simulating the behavior of elastic materials. The software supports a variety

of elastic material models, including linear elastic, nonlinear elastic, plastic

and other models.



Introduction: Backgrounds

▪ Based on some open-source projects, we achieve simulation of controll ing soft robot 

to touch the target point using its end-effector in 4 cases.

▪ Analyze others’ experiments and tune better RL parameters.

▪ Fix the bugs in simulation and rendering codes.

▪ Train the new controller for each case.

▪ Construct the pipeline instruction for the process mentioned above and publish 

on GitHub: https://github.com/ztony0712/Elastica-RL-control-f ix- improve

https://github.com/ztony0712/Elastica-RL-control-fix-improve


Preliminary: Cosserat Rods 

▪ Theory: Cosserat rods are a generalization of Kirchhoff rods, which model 1-d, slender rods incorporating only 

bend and twist. Cosserat rods add the ability to consider stretching and shearing, allowing all the possible modes of 

deformation of the system to be considered.



Preliminary: Cosserat Rods 

Numerics: There are three steps to solving this problem numerically

▪ Spatially discretizing the continuum Cosserat rod equations

▪ Selecting a time stepping algorithm

▪ Specifying boundary conditions and interaction forces



Preliminary: Cosserat Rods 

▪ Multiple Rods: Complex systems, such as musculoskeletal architectures, often require modeling assemblies of 

Cosserat rods. These assemblies can be a heterogeneous mix of active and passive rods that, when coupled 

together, allow modeling of dynamic structures. To assemble multiple active and passive rods into these dynamic 

architectures, it is first necessary to prescribe their rules of interaction. 



Preliminary: Reinforcement Learning

In the aspect of soft robot control in Elastica, we adopt five commonly used reinforcement learning algorithms

▪ TRPO (Trust Region Policy Optimization) is a reinforcement learning algorithm that optimizes strategies to maximize expected returns. The 

key idea of TRPO is to limit the size of each policy update, ensuring trust and improving stability. Although it has better convergence and 

stability, its computational cost is high.

▪ PPO (Proximal Policy Optimization) improves on this by using techniques such as shear ratio and shear advantage function to limit policy 

updates while maintaining reliability, resulting in better performance and lower computational cost than TRPO.

▪ SAC (Soft Actor-Critic) balances exploration and exploitation by maximizing strategy entropy, promoting more exploratory behavior for good 

performance especially in continuous motion space problems.

▪ DDPG (Deep Deterministic Policy Gradient) suitable for continuous action and state space problems, uses deep neural networks to 

represent policies and value functions with experiential playback and target network techniques for improved stability but may face challenges 

with convergence in some environments

▪ TD3 (Twin Delayed DDPG) further improves on this with dual Q networks and delayed policy updates.

On-
policy

Off-
policy



Elastica Case 1-3D tracking of a randomly moving target

▪ Problem Description: The 

goal of this case is for the tip 

of the compliant arm to 

continuously track a randomly 

moving target in 3D space. 

The target moves with a 

constant velocity of 0.5 m/s 

while randomly changing 

directions every 0.7 seconds.

2D visualization 3D visualization



• Choose TD3 cause its curve is stable. Choose 7e6 as total timesteps cause that’s 
the peak of curve.
• These choices can balance the performance and training time.
• TD3 perform best when timesteps per batch are 2e6.

Elastica Case 1-3D tracking of a randomly moving target

Fig. Learning results of the different algorithm Fig. Different algorithm with different timesteps



Elastica Case 2-Reaching to random target location with defined 
orientation

▪ Problem Description: The goal 

of this case is to have the tip of 

the arm reach towards a 

stationary target location that is 

randomly positioned every 

episode. The target orientation 

is defined such that the tangent 

direction of the arm tip should 

be pointed vertically upwards 

while the normal-binormal 

vectors are rotated away from 

the global coordinate frame by 

a random amount between −90°

and 90°

2D visualization 3D visualization



• Choose SAC cause its curve is the best. The curve converge at 8e6, which is 
chosen as total timesteps.
• These choices can balance the performance and training time.
• SAC perform best when timesteps per batch are 2e6.

Elastica Case 2-Reaching to random target location with defined 
orientation

Fig. Learning results of the different algorithm Fig. Different algorithm in different timesteps



Elastica Case 3-Underactuated maneuvering among 
structured obstacles

▪ Problem Description: In this 

case, a stationary target is 

placed behind an array of 8 

obstacles with an opening 

through which the arm must 

maneuver to reach the target. 

The target is placed in the 

normal plane so that only in-

plane actuation is required. 

Obstacles and target locations 

are located in the same location 

and configuration each episode. 

2D visualization 3D visualization



•Choose TRPO cause its curve 
is the best. The peak of curve 
is at 500e6, which is chosen as 
total timesteps.

•All experiments were 
conducted by setting 16000 
timesteps per batch, which was 
claimed as the best

•Case 4 is similar to Case 3, so we still 
chose to use 2-control points.

•2 control points manually placed at 
locations 0.4L and 0.9L along the arm 
were used.

Elastica Case 3-Underactuated maneuvering among 
structured obstacles



Elastica Case 4-Underactuated maneuvering among 
unstructured obstacles

▪ Problem Description: The goal of 

this case is to have the tip of the 

arm reach towards a stationary 

target by maneuvering around an 

unstructured nest of 12 randomly 

located obstacles. Obstacles and 

target locations are located in the 

same place and configuration 

each episode. 3D visualization2D visualization



•Choose PPO cause its curve is high and stable. The total timesteps is set to 1.0e6.
•All experiments were conducted by setting 16000 timesteps per batch, which was 
claimed as the best.
•To balance the performance and resource usage, we choose the 2-control points located 

manually.

•2 control points manually placed at locations 0.4L and 0.9L along the arm were used.

Elastica Case 4-Underactuated maneuvering among 
unstructured obstacles

Fig. Different algorithm with different control pointsFig. Different algorithm in different timesteps



Elastica Case All – Video Presentation



Results and Discussion

✓ For Case 1 and 2, all algorithm 
finished task because it is simple, but 
off-policy did better.

✓ For Case 3 and 4, off-policy even can’t 
converge. The failure caused by 
numerical instabilities derived from 
large external contact forces from 
slamming arm into barriers.

Practically, we need to combine advantages of on-policy and off-policy by 
classifying external environment. That is the development direction of the 
next generation of soft robot controller.



Conclusion

In this project, we ……

◆ Introduce the Elastica and RL to solve 
soft robots' simulation

◆Analyze former experiments results and 
tune RL parameters

◆Train new controllers

◆Visualize the results and render videos

Check our code by: https://github.com/ztony0712/Elastica-RL-control-fix-improve

https://github.com/ztony0712/Elastica-RL-control-fix-improve
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Footnotes
https://github.com/hill-a/stable-baselines 
https://stable-baselines.readthedocs.io/en/master/modules/trpo.html 
https://stable-baselines.readthedocs.io/en/master/modules/ppo1.html 
https://stable-baselines.readthedocs.io/en/master/modules/ddpg.html 
https://stable-baselines.readthedocs.io/en/master/modules/td3.html 
https://stable-baselines.readthedocs.io/en/master/modules/sac.html 
https://gym.openai.com/docs/#installation 
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