
Final Project Report

MPC-SAC: A Hybrid Autonomous Parking
Motion Planner

Zhao Yimin

Matric Number: A0285282X

ME5418 Machine Learning in Robotics

November 22, 2024

Contents

Contents 1

1 Introduction 2

2 Literature Review 2
2.1 Model Predictive Control . 2
2.2 Deep Q Learning . 2

3 Methodology 4
3.1 Fixing Spinning Ego Agent . 4
3.2 Algorithms Deployment . 4
3.3 Training Agents Modularization . 7

4 Evaluation 7
4.1 Experiments Details . 7

5 Simulations 10

6 Conclusion 10

7 Future Work Discussion 10

References 11

1

1 Introduction

As autonomous driving advances, self-parking has become a key function in intelligent
driving systems. Efficient parking requires vehicles not only to accurately identify parking
spaces but also to execute a safe and smooth parking path. This demands a high level of
motion control capability, enabling vehicles to navigate complex environments like narrow
spaces and obstacles.

Traditional motion control methods, often based on predefined path planning and rule-
based control, is more reliable than the learnable planners. However, it is computational
intensive and struggling with the uncertainties present in real-world environments. On
the contrary, learning-based methods are suitable for complex dynamic scenarios and only
require forward propagation for inference, with relatively small computational requirement.
However, due to their lack of interpretability and high dependence on data and extensive
training, the output actions have a certain of uncertainty.

In that case, hybrid planning methods is becoming increasingly popular in the industrial
and researching community. In 2023, Predictive Driver Model (PDM) proposed by Dauner
et al. [3] had already justified the feasibility of this approach. In terms of the principle of
PDM, the planning trajectory of the first half of the duration is computed by traditional
high-performance method Intelligent Driver Model (IDM), and the second half is predicted
by a MLP network. This planner achieved rank 1 in the 2023 nuPlan challenge. Inspired by
this, we combine advantages of conventional planners and learnable planners, and design a
novel motion planner MPC-SAC, which is reliable, stable, and adaptable to the environment.

2 Literature Review

2.1 Model Predictive Control

Model Predictive Control (MPC) is an advanced control strategy that utilizes a dynamic
model of the system to predict future behavior and optimize control actions accordingly.
By solving a finite horizon optimization problem at each control step, MPC can handle
multivariable systems with constraints on inputs and outputs, making it particularly suitable
for complex and constrained systems [2]. Its ability to anticipate future events and incorporate
feedback makes MPC a powerful tool in various applications, including process control,
automotive systems, and robotics [9].

2.2 Deep Q Learning

Deep Q-Learning has played an important role in advancing reinforcement learning by
enabling agents to learn optimal policies in high-dimensional state spaces, which is crucial
for applications like motion control in autonomous driving. Deep Q-Learning approximates
the optimal action-value function using deep neural networks. The key update rule in Deep
Q-Learning is expressed as [8]:

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼
[
𝑟𝑡 + 𝛾 max

𝑎′
𝑄(𝑠𝑡+1, 𝑎′) −𝑄(𝑠𝑡 , 𝑎𝑡)

]
(1)

where 𝑠𝑡 is the state at time 𝑡, 𝑎𝑡 is the action taken, 𝑟𝑡 is the reward received, 𝛼 is the
learning rate, and 𝛾 is the discount factor. In the autonomous driving, Deep Q Learning can
be employed to learn optimal motion control policies by mapping LiDAR and camera sensor

2

inputs, or map data after Simultaneous Localization And Mapping (SLAM). The trained
model can be used to control actions like steering and acceleration. This approach allows
the vehicle to make decisions that adapt to dynamic environments, enhancing its ability to
navigate complex scenarios involving obstacles and narrow spaces [8].

However, Deep Q-Learning’s limitation lies in its design for discrete action spaces, making
it less suitable for tasks that require continuous control actions, such as precise steering or
acceleration in autonomous vehicles. To overcome this, algorithms like Deep Deterministic
Policy Gradient (DDPG), Twin Delayed Deep Deterministic Policy Gradient (TD3), and
Soft Actor-Critic (SAC) have been developed. The interrelation between these algorithms lies
in their shared foundation of deep reinforcement learning and their goal of enabling continuous
control. DDPG extends Deep Q-Learning to continuous action spaces using deterministic
policies. TD3 builds upon DDPG by introducing methods to reduce overestimation and
improve learning stability. SAC, while also operating in continuous spaces, differs by using
stochastic policies and entropy maximization to enhance exploration. All three algorithms
address the limitations of Deep Q-Learning in continuous domains and contribute to the
advancement of motion control in autonomous driving by enabling vehicles to learn and
adapt to complex, real-world environments.

Deep Deterministic Policy Gradient

DDPG builds upon Deep Q-Learning by combining it with deterministic policy gradients,
allowing for continuous action selection [7]. It employs an actor-critic architecture where
the actor network outputs continuous actions, and the critic network evaluates them. This
approach effectively extends Deep Q-Learning’s value function approximation to continuous
domains, enabling the learning of precise control policies necessary for smooth vehicle
operation.

Twin Delayed Deep Deterministic Policy Gradient

TD3 further refines DDPG by addressing issues like overestimation bias and function
approximation errors that can occur in actor-critic methods [4]. It introduces techniques such
as clipped double Q-learning, where two critic networks are used, and the minimum of their
estimates is taken to reduce bias. Delayed policy updates and target policy smoothing are
also implemented to enhance learning stability. TD3’s enhancements make it more robust for
continuous control tasks, improving upon DDPG’s performance in complex environments.

Soft Actor Critic

SAC takes a different approach by incorporating entropy maximization into the reinforcement
learning objective, aiming to improve both the exploration and robustness of the learned
policies [5]. By maximizing the expected reward while also maximizing the entropy of
the policy, SAC encourages more stochastic and exploratory behavior. This is particularly
advantageous in autonomous driving scenarios where the environment is dynamic and
uncertain, requiring the agent to adapt to unforeseen changes.

3

3 Methodology

3.1 Fixing Spinning Ego Agent

In previous work, the model did not perform well. It kept spinning in all kinds of parking
scenarios. Therefore, we changed the RL algorithm from our own designed DDPG to the
Soft Actor Critic (SAC) algorithm in the stable-baseline3 library [10], in order to determine
whether there are any problems with the environment, reward, and training process we
designed.

Environmental Fine-tuning

Other static vehicles are removed and random goal position is changed to fixed goal for
making simulation environment simple to learn. For vehicle model, in order to make the ego
agent motion control more flexible, the max steering limit and max steering change per step
are both appropriately increased.

Reach Goal Detection

In previous work, this detection was based on reward computation, which means that when
the reward exceeds a certain threshold, it will be deemed as successfully completing the
automatic parking task, and the environment will be reset. The used reward function was
mentioned in proposal and can be written as [6]:

𝑅(𝑠, 𝑎) = −∥𝑠 − 𝑠𝑔∥ 𝑝𝑊,𝑝
− 𝑏 · collision (2)

where ∥𝑠 − 𝑠𝑔∥𝑊,𝑝 is the weighted 𝑝-norm, encouraging the vehicle to move closer to
the target spot and align correctly with the desired heading without collision. However,
using reward thresholds to determine success heavily relies on the design of the reward
function. If the reward function is not accurately or comprehensively designed, it may lead to
misjudgment of success. In addition, due to the complexity of the reward design, how to set
the threshold is also a problem. In that case, we changed criteria to more direct and simple
ones.

∥p𝑐 − p𝑔∥2 < 𝑑𝑡ℎ (3)

h𝑐 · h𝑔 > 𝜎𝑡ℎ (4)

, where p𝑐 and h𝑐 are current position and heading, and p𝑐 and h𝑐 are goal position
and heading. In addition, 𝑑𝑡ℎ is position distance threshold and 𝜎𝑡ℎ is heading similarity
threshold. Practically, we set threshold variances 𝑑𝑡ℎ = 15 and 𝜎𝑡ℎ = 0.90. For goal heading,
we set h𝑔 = 𝜋/2 because all parking lots are vertical in the simulation environment. For goal
position, it is initiated in a random parking lot.

3.2 Algorithms Deployment

In new environment, SAC performs well which means problems in simulation environment
are solved. In that case, we first randomly reset goal for every episode and randomly
generates static obstacle cars in spaces that are not goal with 0.1 rate. Secondly, we
deployed, train, and simulate self-designed DDPG, TD3, MPC-SAC algorithms. We abandon

4

DDPG-Net described in proposal because even DDPG itself can not converge in this task,
and developed the advanced version of DDPG – TD3. Furthermore, we design MPC-SAC
planner to combine the advantages of MPC and SAC. All experiments are implemented on
NVIDIA RTX 3080 GPU.

Algorithm 1 DDPG Network Architecture

1: Initialize actor 𝜇(𝑠 |𝜃𝜇) and critic 𝑄(𝑠, 𝑎 |𝜃𝑄) network with random weights
2: Initialize target networks 𝜇′ and 𝑄′ with weights 𝜃𝜇′ ← 𝜃𝜇, 𝜃𝑄′ ← 𝜃𝑄

3: Initialize replay buffer R
4: for each episode do
5: Initialize exploration noise N
6: Set initial state 𝑠1
7: for t = 1, T do
8: Process state: if dict, extract ’achieved_goal’
9: 𝑥 ← ReLU(Linear256(𝑠)) ⊲ Actor: First hidden layer

10: 𝑥 ← ReLU(Linear256(𝑥)) ⊲ Second hidden layer
11: 𝑎 ← tanh(Linear(𝑥)) ×max_action
12: Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and new state 𝑠𝑡+1
13: Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in R
14: Sample random minibatch of N transitions from R
15: Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1))
16: Update critic by minimizing loss: 𝐿 = 1

𝑁

∑(𝑦𝑖 −𝑄(𝑠𝑖 , 𝑎𝑖))2
17: Update actor using policy gradient
18: Update target networks:
19: 𝜃𝜇

′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

20: 𝜃𝑄
′ ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

21: end for
22: end for

Soft Actor Critic

By implementing SAC from Stable-Baseline, the training pipeline is constructed easily. In
terms of key update rule, the equation is presented as [5]:

𝐽 (𝜋) =
∑︁
𝑡

E(𝑠𝑡 ,𝑎𝑡)∼𝜌𝜋
[𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛼H (𝜋(· | 𝑠𝑡))] (5)

Practically, the SAC model is configured to use the MultiInputPolicy for the environment,
with HER Replay Buffer. The replay buffer size is set to 1,000,000, with a learning rate
of 0.001, a discount factor of 0.95, a batch size of 2048, and a soft update coefficient of
0.05. The policy network architecture consists of 3 layers, each with 1024 neurons. Learning
begins after 10,000 steps, and the training step is set to 300,000.

Deep Deterministic Policy Gradient

For DDPG, the key update rule equation is presented as [7]:

∇𝜃𝜇 𝐽 ≈ E𝑠𝑡

[
∇𝑎𝑄(𝑠𝑡 , 𝑎 |𝜃𝑄)

��
𝑎=𝜇 (𝑠𝑡)∇𝜃𝜇𝜇(𝑠𝑡 |𝜃𝜇)

]
(6)

5

This update is implemented in training iteration, which is written as Algorithm 1.
Practically, the HER replay buffer size is set to 1,000,000, with an actor learning rate of
1.0e-4, a critic learning rate of 1.0e-3, a discount factor of 0.99, a batch size of 256, and a
soft update coefficient of 0.005. The policy network architecture consists of 2 layers, each
with 256 neurons. The training step is set to 1.0e6.

Twin Delayed Deep Deterministic Policy Gradient

For TD3, the key update rule equation is presented as [4]:

𝑦 = 𝑟𝑡 + 𝛾 min
𝑖=1,2

𝑄 𝜃𝑄𝑖 (𝑠𝑡+1, 𝜇𝜃𝜇 (𝑠𝑡+1) + 𝜖) (7)

This update is implemented in training iteration, which is written as Algorithm 2.
Practically, hyper-parameters are same to those of the DDPG.

Algorithm 2 TD3 Network Architecture

1: Initialize actor network 𝜋(𝑠 |𝜃 𝜋) and critic networks 𝑄1(𝑠, 𝑎 |𝜃𝑄1), 𝑄2(𝑠, 𝑎 |𝜃𝑄2)
2: Initialize target networks 𝜃 𝜋′ ← 𝜃 𝜋 , 𝜃𝑄′1 ← 𝜃𝑄1 , 𝜃𝑄′2 ← 𝜃𝑄2

3: Initialize replay buffer R
4: for each episode do
5: Initialize exploration noise N
6: Set initial state 𝑠1
7: for t = 1, T do
8: Process state: if dict, extract ’achieved_goal’
9: 𝑥 ← ReLU(Linear256(𝑠)) ⊲ Actor: First hidden layer

10: 𝑥 ← ReLU(Linear256(𝑥)) ⊲ Actor: Second hidden layer
11: 𝑎 ← max_action × tanh(Linear(𝑥))
12: Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and new state 𝑠𝑡+1
13: Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in R
14: Sample random minibatch of N transitions from R
15: // Compute target actions with noise and clipping
16: 𝑎̃ ← 𝜋′(𝑠𝑡+1) + clip(𝜖,−𝑐, 𝑐), 𝜖 ∼ N(0, 𝜎)
17: // Compute target Q-value as minimum of both critics
18: 𝑦 ← 𝑟 + 𝛾 min𝑖=1,2 𝑄

′
𝑖
(𝑠𝑡+1, 𝑎̃)

19: // Update critics
20: Update 𝑄1, 𝑄2 by minimizing (𝑦 −𝑄1(𝑠, 𝑎))2 and (𝑦 −𝑄2(𝑠, 𝑎))2
21: if t mod policy_delay = 0 then ⊲ Delayed policy updates
22: Update actor by maximizing 𝑄1(𝑠, 𝜋(𝑠))
23: Update target networks:
24: 𝜃 𝜋

′ ← 𝜏𝜃 𝜋 + (1 − 𝜏)𝜃 𝜋′

25: 𝜃𝑄
′
1 ← 𝜏𝜃𝑄1 + (1 − 𝜏)𝜃𝑄′1

26: 𝜃𝑄
′
2 ← 𝜏𝜃𝑄2 + (1 − 𝜏)𝜃𝑄′2

27: end if
28: end for
29: end for

6

MPC-SAC

For Model Predictive Control, the key is optimizing the following objective function [2]:

min
𝑢(𝑘)

𝑁𝑝∑︁
𝑖=1
∥𝑦(𝑘 + 𝑖) − 𝑟 (𝑘 + 𝑖)∥2𝑄 +

𝑁𝑐∑︁
𝑖=1
∥𝑢(𝑘 + 𝑖 − 1)∥2𝑅 (8)

This MPC Algorithm 3 is integrated into environment to control ego vehicle every 5
steps. For remaining steps, SAC is used to control the ego vehicle.

Algorithm 3 MPC-SAC Architecture
1: Initialize MPC controller with horizon 𝐻, timestep Δ𝑡

2: Initialize SAC controller
3: 𝑠𝑡𝑒𝑝 ← 0 ⊲ Track current simulation step
4: while simulation is running do
5: if 𝑠𝑡𝑒𝑝 mod 5 = 0 then ⊲ Every 5th step, use MPC for control
6: 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ←MPC-Control(current_state, previous_action)
7: else ⊲ Use SAC for other steps
8: 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ← SAC-Control(current_state)
9: end if

10: Apply 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 to the ego vehicle
11: 𝑠𝑡𝑒𝑝 ← 𝑠𝑡𝑒𝑝 + 1
12: end while
13: function MPC-Control(state, action)
14: 𝑢0 ← repeat(action, 𝐻) ⊲ Initial guess for MPC optimisation
15: optimal_u← min

𝑢
ObjectiveFunction(𝑢, state) return first action pair from optimal_u

16: end function
17: function SAC-Control(state)
18: return SAC policy decision based on current state
19: end function

3.3 Training Agents Modularization

As we design two algorithms, a base training agent is created to contain implementation of
Hindsight Experience Replay (HER) replay buffer, exploration noise and other abstract
methods. HER is a technique that enhances the learning efficiency of reinforcement learning
agents in environments with sparse rewards by allowing them to learn from unsuccessful
attempts as if they were successful [1]. For the DDPG agent, it adds an Ornstein Uhlenbeck
Action Noise (OU noise). While TD3 adds a Gaussian noise. Combining with training script,
algorithm is able to be switched to train by changing parameters behind python bash running
commands.

4 Evaluation

4.1 Experiments Details

In Agent Training Report we provided a TensorBoard interface, but it lacks some important
monitoring indicators such as success rate, average step length and average reward. Meanwhile,

7

we remove meaningless distance to goal, episode length, episode reward, and average Q
value. We finally complete experiments on the 4 algorithms introduced above. The final
monitoring panel results are presented by Fig. 1, Fig. 2, and Fig. 3.

Figure 1: DDPG training indicators are monitored by TensorBoard.

Figure 2: TD3 training indicators are monitored by TensorBoard.

By referring the metrics in these figures, we illustrate the Tab. 1 to compare and evaluate
all methods implemented. All data recorded is smoothed average value. As Tab. 1 indicated,
DDPG and TD3 are failed to converge in this task and obtain 0 success rate. However, SAC
and MPC-SAC converge and our novel MPC-SAC motion planner performs better in success
rate. Although loss metrics of SAC are lower, those of MPC-SAC decrease more dramatically.

Furthermore, Fig. 3 shows that the success rate fluctuation of MPC-SAC is smaller than
that of SAC. Additionally, MPC-SAC success rate still appears to be on an upward trend,
which means that as the number of episodes further increases, the performance gap between
MPC-SAC and SAC will also further widen.

Planner Actor Loss ↓ Critic Loss ↓ Episode Length ↓ Episode Reward ↑ Success Rate ↑
DDPG diverge diverge diverge diverge 0.00
TD3 diverge diverge diverge diverge 0.00
MPC-SAC (Ours) 3.7232 0.0206 50.66 -24.85 0.8414

SAC Baseline 3.3322 0.0202 60.01 -27.06 0.7951

Table 1: Training metrics comparison among DDPG, TD3, SAC, MPC-SAC algorithms

8

Figure 3: Comparison of training indicators between SAC (pink) and MPC-SAC (green).

Figure 4: Simulation: Autonomous vehicle is driving forward the goal position

In the end, we also find the speed of MPC-SAC is slower than that of SAC baseline. The
addition of MPC requires more computation resource. However, due to the fact that MPC is
only used every 5 steps, the speed of MPC-SAC is much faster than using MPC directly. This
new method cleverly achieves a balance between the planner’s speed and accuracy.

9

5 Simulations

By loading model and rendering the simulation environment, inference performance are
illustrated intuitively. The video is included in the submission fold, and Fig. 4 depicts the
scene of yellow autonomous driving vehicle heading towards the green goal position.

6 Conclusion

In conclusion, this work proposes a novel motion planner for autonomous parking called
MPC-SAC. By using SAC as the main method and MPC as the auxiliary correction, the
performance of MPC-SAC is significantly higher than those of the purely learning-based
methods in the autonomous parking task. Specifically, while DDPG and TD3 algorithms
are so time-consuming and finally failed to converge, both stable-baseline SAC and our
MPC-SAC achieved convergence. Notably, the MPC-SAC planner achieved a higher success
rate of 84.14% compared to the SAC baseline’s 79.51%, along with shorter episode lengths
and improved stability. The success rate of MPC-SAC also exhibited less fluctuation
during training, indicating enhanced reliability. This hybrid approach not only improves
performance but also contributes to bridging the gap between traditional control methods
and modern reinforcement learning algorithms. The code of our project is open-source on
GitHub: https://github.com/ztony0712/5418_autopark_env.

7 Future Work Discussion

First enhancement could be deployed on environment. Friction might be used and four-
wheeled car model would be more realistic than bicycle model. Dynamic obstacles and
varying parking lot environment could improve robustness and adaptability of motion planner.
Secondly, sensor input or map prior knowledge should be added into observation for making
ego agent understand the positions of obstacles. At last, exploring implementations of more
kinds of reward functions and learning-based methods is helpful to further improve motion
planner.

10

https://github.com/ztony0712/5418_autopark_env

References

[1] Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew,
B., Tobin, J., Pieter Abbeel, O., Zaremba, W.: Hindsight experience replay. In: Advances
in Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017)

[2] Camacho, E.F., Bordons, C.: Model Predictive Control. Advanced Textbooks in Control
and Signal Processing, Springer, London (2007). https://doi.org/10.1007/978-0-85729-
398-5

[3] Dauner, D., Hallgarten, M., Geiger, A., Chitta, K.: Parting with misconceptions about
learning-based vehicle motion planning. In: Proceedings of The 7th Conference on
Robot Learning. pp. 1268–1281. PMLR (Dec 2023)

[4] Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods (Oct 2018). https://doi.org/10.48550/arXiv.1802.09477

[5] Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor (Aug 2018).
https://doi.org/10.48550/arXiv.1801.01290

[6] Leurent, E.: An environment for autonomous driving decision-making. https://
github.com/eleurent/highway-env (2018)

[7] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning (Jul 2019).
https://doi.org/10.48550/arXiv.1509.02971

[8] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.:
Human-level control through deep reinforcement learning. Nature 518(7540), 529–533
(Feb 2015). https://doi.org/10.1038/nature14236

[9] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology.
Control Engineering Practice 11(7), 733–764 (Jul 2003). https://doi.org/10.1016/S0967-
0661(02)00186-7

[10] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research 22(268), 1–8 (2021), http://jmlr.org/papers/v22/20-1364.
html

11

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

	Contents
	Introduction
	Literature Review
	Model Predictive Control
	Deep Q Learning

	Methodology
	Fixing Spinning Ego Agent
	Algorithms Deployment
	Training Agents Modularization

	Evaluation
	Experiments Details

	Simulations
	Conclusion
	Future Work Discussion
	References

